miércoles, 26 de noviembre de 2008

TEORIA DE LA DERIVA CONTINENTAL

La teoría de la deriva continental fue propuesta originalmente por Alfred Wegener en 1912, quien la formuló basándose, entre otras cosas, en la manera en que parecen encajar las formas de los continentes a cada lado del Océano Atlántico


La teoría de la deriva continental fue sustituida en la explicación del desplazamiento continental por la teoría de la tectónica de placas, nacida en los años 1960 a partir de investigaciones de Robert Dietz, Bruce Heezen, Harry Hess, Maurice Ewing, Tuzo Wilson y otros. Según esta teoría, el fenómeno del desplazamiento sucede desde hace miles de millones de años gracias a la convección global en el manto, de la que depende que la litosfera sea reconfigurada y desplazada permanentemente.
Se trata en este caso de una explicación consistente, en términos físicos, que aunque difiere radicalmente acerca del mecanismo del desplazamiento continental, es igualmente una teoría movilista, que permitió superar las viejas interpretaciones fijistas de la orogénesis (geosinclinal y contraccionismo) y de la formación de los continentes y océanos. Por esto, Wegener es considerado, con toda justicia, su precursor y por el mismo motivo ambas teorías son erróneamente consideradas una sola con mucha frecuencia

RELIEVE CONTINENTAL



Dentro del relieve continental se diferencia una gran cantidad de tipos diferentes de formaciones. Las principales son: Montaña: Elevación rocosa de la superficie terrestre de forma cónica. Las más antiguas son bajas y redondeadas debido al desgaste que han sufrido durante el tiempo. Las más nuevas, son altas y puntiagudas. Llanura: Terreno plano y extenso con escaso desnivel que se ubican a una altura menor de 200 metros respecto del nivel del mar. Surgieron por evaporación de algunos lagos, el alejamiento de los mares o la sedimentación de sustancias arrastradas por los ríos. Plenillanura: Ondulación suave del terreno que no superan los 400 metros. Son un punto intermedio entre las llanuras y las mesetas. Surgen de un intenso desgaste de las montañas. Meseta: Terreno plano y extenso ubicado a alturas de más de 200 metros sobre el nivel del mar. Se formaron por la erosión de las montañas o el levantamiento del terreno, en forma menos brusca que las montañas. Altiplano: Meseta situada gran altura, que suelen estar limitadas por montañas. Valle: Depresión de forma alargada limitada por montañas generalmente recorridas por un río. Depresión absoluta: Area bajo el nivel del mar en tierra emergente. Como tipos secundarios de relieve se define: Macizo: Conjunto de montañas muy elevadas. Cordillera: Cadena montañosa de considerable altura y longitud. Nudo: Lugar donde se encuentran dos o más sistemas de montañas. Sierras: Cadena montañosa baja y de mediana extensión. Cerro: Elevación aislada de poca altura. Colina: Elevación redondeada de menos de 400 metros de altura. Lomada: Ondulación del terreno de poca altura. Duna: Colina de arena formada por acción del viento. Cañón: Depresión abrupta de paredes casi verticales en terrenos montañosos.
Relieve oceánico o de tierras sumergidas
El relieve oceánico es mucho menos irregular que el relieve continental debido a que no actúan sobre él los agentes externos. A medida que aumenta la profundidad también crece la quietud de las aguas. Costa: Línea de contacto de la superficie continental y el mar. Plataforma continental: Continuación del declive del continente que se encuentra bajo las aguas oceánicas hasta una profundidad de 200 metros. Su extensión depende del relieve continental. La plataforma es amplia cuando es continuación de una llanura y estrecha cuando lo es de un relieve montañoso. Borde continental: Punto donde la plataforma continental cae abruptamente formando el talud continental. Talud continental: Pendiente en forma de barranca que llega al fondo oceánico. Forma la pared del continente. Fosa oceánica: Cavidad estrecha y alargada en el fondo oceánico que presenta las mayores profundidades. Fondo abisal: Llanura que forma el fondo oceánico. Dorsal oceánica: Cordillera submarina que dividen las cuencas oceánicas.

VULCANISMO


es un fenómeno que consiste en la salida desde el interior de la Tierra hacia el exterior de rocas fundidas o magma, acompañada de emisión a la atmósfera de gases. El estudio de estos fenómenos y de las estructuras, depósitos y formas que crea es el objeto de la vulcanología.
El magma y los gases rompen las zonas más débiles de la corteza externa de la Tierra o litosfera para llegar a la superficie. Estas debilidades se encuentran sobre todo a lo largo de los límites entre placas tectónicas, que es donde se concentra la mayor parte del vulcanismo. Cuando el magma y los gases alcanzan la superficie a través de las chimeneas o fisuras de la corteza, forman estructuras geológicas llamadas volcanes, de los que hay varios tipos. La imagen clásica del volcán, ejemplificada por el monte Fuji Yama de Japón o por el monte Mayon de Filipinas, es una estructura cónica con un orificio (cráter) por el que emiten (si está activo) cenizas, vapor, gases, roca fundida y fragmentos sólidos, con frecuencia de manera explosiva. Pero en realidad, esta clase de volcanes, aunque no son infrecuentes, supone menos del 1% de toda la actividad volcánica terrestre.
Al menos el 80% del vulcanismo se concentra en las largas fisuras verticales de la corteza terrestre. Este vulcanismo de fisura ocurre sobre todo en los bordes constructivos de las placas en que está dividida la litosfera. Tales bordes constructivos están marcados por cadenas montañosas oceánicas (dorsales oceánicas) en las que se crea continuamente nueva corteza a medida que las placas se separan. De hecho, es el magma ascendente enfriado producido por el vulcanismo de fisura el que forma el nuevo fondo oceánico. Por tanto, la mayor parte de la actividad volcánica permanece oculta bajo los mares.
¿Qué es un volcán?
Un Volcán es una formación geológica que consiste en una fisura en la corteza terrestre sobre la que se acumula un cono de materia volcánica. En la cima del cono hay una chimenea cóncava llamada cráter. El cono se forma por la deposición de materia fundida y sólida que fluye o es expelida a través de la chimenea desde el interior de la Tierra. El estudio de los volcanes y de los fenómenos volcánicos se llama vulcanología.
La mayoría de los volcanes son estructuras compuestas, formadas en parte por corrientes de lava y materia fragmentada. El Etna, en Sicilia, y el Vesubio, cerca de Nápoles, son ejemplos famosos de conos compuestos. En erupciones sucesivas, la materia sólida cae alrededor de la chimenea en las laderas del cono, mientras que corrientes de lava salen de la chimenea y de fisuras en los flancos del cono. Así, el cono crece con capas de materia fragmentada y con corrientes de lava, todas inclinadas hacia el exterior de la chimenea.
Algunas cuencas enormes, parecidas a cráteres, llamadas calderas y situadas en la cumbre de volcanes extintos o inactivos desde hace mucho tiempo, son ocupadas por lagos profundos, como el lago del Cráter, en Óregon , o por llanuras planas, como el amplio valle Caldera en el norte de Nuevo México, ambos en Estados Unidos.

SISMICIDAD


La sismología es una ciencia que estudia los terremotos. Implica la observación de las vibraciones naturales del terreno y de las señales sísmicas generadas de forma artificial, con muchas ramificaciones teóricas y prácticas. Como rama de la geofísica, la sismología ha aportado contribuciones esenciales a la comprensión de la tectónica de placas, la estructura del interior de la Tierra, la predicción de terremotos y es una técnica valiosa en la búsqueda de minerales.
2.0 Fenómenos sísmicos
La deformación de los materiales rocosos produce distintos tipos de ondas sísmicas. Un deslizamiento súbito a lo largo de una falla, por ejemplo, produce ondas primarias, longitudinales o de compresión (ondas P) y secundarias, denominadas transversales o de cizalla (ondas S). Los trenes de ondas P, de compresión, establecidos por un empuje (o tiro) en la dirección de propagación de la onda, causan sacudidas de atrás hacia adelante en las formaciones de superficie. La velocidad de propagación de las ondas P depende de la densidad de las rocas. En la propagación de las ondas de cizalla, las partículas se mueven en dirección perpendicular a la dirección de propagación. Las ondas P y las ondas S se transmiten por el interior de la Tierra; las ondas P viajan a velocidades mayores que las ondas S.
Terremotos y ondas sísmicas Los terremotos se producen cuando se libera de forma súbita la presión o tensión almacenada entre secciones de roca de la corteza, causando temblores sobre la superficie terrestre. El lugar en el que las capas de roca se desplazan y disponen unas en relación a otras se llama foco, centro efectivo del terremoto. Justo encima del foco, un segundo lugar llamado epicentro señala el punto superficial donde la sacudida es más intensa. Las ondas de choque se propagan como ondulaciones desde el foco hasta el epicentro decreciendo en intensidad. Los tipos principales de ondas sísmicas son las ondas primarias (ondas P) y las de cizalla (ondas S). Las ondas P desplazan las partículas en la misma dirección que la onda (izquierda). Son las detectadas primero porque son más rápidas que las S (derecha), que provocan vibraciones perpendiculares a la dirección de propagación
Cuando las ondas P y S encuentran un límite, como la discontinuidad de Mohorodovicic (Moho), que yace entre la corteza y el manto de la Tierra, se reflejan, refractan y transmiten en parte y se dividen en algunos otros tipos de ondas que atraviesan la Tierra. Las rocas graníticas corticales muestran velocidades típicas de onda P de 6 km/s, mientras que las rocas subyacentes máficas y ultramáficas (rocas oscuras con contenidos crecientes de magnesio y hierro) presentan velocidades de 7 y 8 km/s respectivamente.
Además de las ondas P y S -ondas internas o de volumen-, hay dos tipos de ondas superficiales: las ondas de Love, llamadas así por el geofísico británico Augustus E. H. Love, y las ondas de Rayleigh, que reciben este nombre en honor al físico británico. Las ondas superficiales sólo se propagan por la superficie terrestre y son las causantes de los mayores destrozos. Las ondas superficiales son más lentas que las ondas internas.

ERAS GEOLOGICAS

En geología, era se refiere a un periodo de tiempo extremadamente largo, millones de años, que abarca importantes procesos geológicos y biológicos. Cinco Eras han ocurrido en la historia de la tierra: era arcaica, Paleozoica o primaria, Mesozoica o secundaria y Cenozoica o terciaria, era cuaternaria o antropozoica actual son parte del Eón Fanerozoico

Las eras son subdivisiones de los eones, definidas a partir de grandes discordancias que señalan el inicio de distintos ciclos orogénicos. Así, el Fanerozoico lo integran tres eras geológicas: la Paleozoica, , la Mesozoica,, y la Cenozoica el presente.
Antiguamente al Paleozoico se le llamaba "Primario" y al Mesozoico "Secundario", pero esas denominaciones han caído en desuso a favor de denominaciones biológicas, que coinciden con el carácter de los fósiles encontrados en los estratos; sin embargo se sigue utilizando el término "Terciario" para el Cenozoico, más por costumbre muy arraigada que por precisión terminológica.


ERA AZOICA.
Sin vida se estaban formando los continentes
Areaico
Precámbrico
Proterozaico
Características:
Se solidifica la corteza terrestre
Se forman los océanos
Probablemente surgen bacterias capaces de realizar la fotosíntesis
Surgen organismos autotrofos como cianobacterias
Evolucionan organismos gerobios, hubo una gran glaciación
Desplazamiento de los continentes y formación de mares.
Godwana
Pangea
Laurasia
Cámbrico: vida exclusivamente marina predominan los trilobites, celenterados y briozarios.
Ordovicico: primeros vertebrados à peces agnatos
Situricos: evolución y diversificación de los peces
Devónico: los peces evolucionan a anfibios
Carbonifero: evolucionan los gimnospermas y los réptiles
Permico: cambios climáticos algunos mares desaparecen y emergen tierras desaparecen los trilobites.
La ERA PALEOZOICA se conoce como era de los trilobites.
ERA CENOZOICA.
La era terciaria o Cenozoica (vida moderna) con duración de 71 millones de años comprendió 2 periodos: el Paleogeno y el Neógeno y correspondía a la edad de los mamíferos y de las aves. Durante esta era ocurrieron: el desarrollo de los tipos superiores de invertebrados y de los vegetales, el desarrollo y evolución de los mamíferos placentados hacia los tiempos modernos.
Es necesario informar aquí que en los periodos, se subdividieron además en épocas que en ocasiones llevaban nombres específicos y en otros simplemente ordinales: Inferior, Media, Superior, por ejemplo: en el periodo Cretáceo las épocas fueron inferior, Media y Superior, en tanto que en el periodo Neógeno, las épocas fueron Mioceno y Plioceno.

ESTRUCTURA INTERNA DE LA TIERRA

El estudio de los terremotos ha permitido definir el interior de la Tierra y distinguir tres capas principales, desde la superficie avanzando en profundidad, en función de la velocidad de propagación de las ondas sísmicas. Dichas capas, apreciables en un corte transversal, son: corteza, manto y núcleo. También la información que nos proporcionan los meteoritos puede ser de gran utilidad para conocer la composición de los materiales del interior de la Tierra. Los métodos de datación sitúan la edad de algunos meteoritos en unos 4500 millones de años coincidente con la edad de la tierra. Se cree que la composición de muchos meteoritos es idéntica a la de algunas capas del interior terrestre.



La corteza
Con el nombre de corteza se designa la zona de la Tierra sólida situada en posición más superficial, en contacto directo con la atmósfera, la hidrosfera y la biosfera. La corteza terrestre presenta dos variedades: corteza oceánica y corteza continental.


La corteza oceánica
La corteza oceánica tiene un grosor aproximado de 10 km; no obstante, esta cifra decrece notablemente en determinados puntos del planeta, como en el rift valley, en el área central de las dorsales oceánicas, donde alcanza un valor prácticamente equivalente a O. En dicha zona, el magma procedente del manto aflora directamente. En la corteza oceánica se pueden distinguir diversas capas. Los sedimentos que forman la primera tienen un espesor situado entre 0 y 4 km; la velocidad media de propagación de las ondas sísmicas alcanza los 2 km/s. A continuación se localiza una franja de basaltos metamorfizados que presentan entre 1,5 y 2 km de grosor; la velocidad de las ondas es en este punto de 5 km/s. La tercera capa de la corteza oceánica, formada por gabros metamorfizados, mide aproximadamente 5 km; en ella, la velocidad media queda comprendida entre 6,7 y 7 km/s. tambien una última parte, donde se registra la máxima velocidad (8 km/s); está constituida por rocas ultra básicas cuyo espesor ronda el medio kilómetro.


La corteza continental
Con un espesor medio de 35 km, la corteza continental incrementa notablemente este valor por debajo de grandes formaciones montañosas, pudiendo alcanzar hasta 60-70 km. Aparece dividida en dos zonas principales: superior e inferior, diferenciadas por la superficie de discontinuidad de Conrad. En este plano existe un brusco aumento de la velocidad de las ondas sísmicas, que, no obstante, no se registra er~ todos sus puntos. Consecuentemente, puede afirmarse que no hay una separación nítida entre ambas capas. La corteza superior presenta una densidad medía de 2,7 kg/dm3 y, en el continente europeo, su espesor medio se sitúa en algo más de 810 km. Los materiales que la constituyen son rocas sedimentarias dispuestas sobre rocas volcánicas e intrusivas graníticas. La corteza inferior contiene rocas metamorfizadas cuya composición es intermedia (entre granito y. diorita o gabro); su densidad equivale a 3 kg/dm3.


El manto
En un nivel inmediatamente inferior se sitúa el manto terrestre, que alcanza una profundidad de 1900 km. La discontinuidad de Mohorovicic, además de marcar la separación entre la corteza y el manto terrestres, define una alteración en la composición de las rocas; si en la corteza —especialmente en la franja inferior— eran principalmente basálticas, ahora encontramos rocas mucho más rígidas y densas, las peridotitas. Hay que hacer notar que la discontinuidad de Mohorovicic se encuentra a diferente profundidad, dependiendo de que se sitúe bajo corteza oceánica o continental. El manto se puede subdividir en manto superior e inferior.
El manto superior se prolonga hasta los 650 o los 700 km de profundidad. En este punto, la velocidad de las ondas sísmicas se incrementa, al aumentar la densidad. A su vez, en el manto superior pueden diferenciarse dos regiones; en la superficial, el incremento de velocidad es constante con relación a la profundidad, mientras que en la inferior la velocidad decrece súbitamente. Como resultado de la fusión que experimentan las peridotitas en esta última capa, su rigidez disminuye con relación a la capa superior.
El grosor del manto inferior varía entre 650-700 km —bajo la astenosfera— y 2.900 km —en la discontinuidad de Gutenberg, que marca la separación entre el manto y el núcleo—. En la parte interna de esta capa, tanto la densidad —que pasa de .4 kg/dm3 a 6 kg/dm3, aproximadamente— como la velocidad aumentan de manera constante.


El núcleo
Los principales elementos constitutivos del núcleo terrestre son dos metales: hierro y níquel. A partir del límite marcado por la discontinuidad de Gutenberg, la densidad experimenta un súbito aumento, desde 6 a 10 kg/dm3, aproximadamente. Por otra parte, la velocidad de las ondas sísmicas primarias experimenta un rápido descenso —se pasa de 13 km/s a 8 km/s—, al tiempo que no se registra propagación de ondas secundarias hasta profundidades de 5.080 km. En este último punto, conocido como discontinuidad de Lehmann, la velocidad de las ondas primarias vuelve a incrementarse, situándose en torno a los 14 km/s en el centro del globo terrestre.
Existe un núcleo superior y un núcleo inferior; el primero, con ausencia de ondas secundarias, aparece fundido, mientras que el segundo se encuentra en estado sólido.
La investigación de los fondos oceánicos
La aplicación de grandes avances tecnológicos al estudio de los océanos ha permitido, en las últimas décadas, conocer a fondo aspectos enormemente relevantes de su geología y su morfología. Como resultado, existen en la actualidad mapas precisos de los fondos oceánicos. Elementos característicos de la geografía submarina son los márgenes continentales, las cuencas oceánicas y las dorsales.
Los márgenes continentales
La prolongación de los continentes por debajo del nivel del mar constituye los márgenes continentales, formados por corteza continental. Se distinguen tres zonas principales: la plataforma, el talud y la elevación.
La plataforma continental, una zona que se inclina paulatinamente hasta llegar al talud, puede no presentarse o, por el contrario, alcanzar una extensión de cientos de kilómetros. Aparece recubierta por materiales resultantes de la erosión de la tierra emergida, que han sido transportados por los cursos fluviales.
En torno a —200 m aparece el talud, una pendiente horadada por los denominados cañones submarinos, por los que «viajan» sedimentos procedentes de la plataforma o bien consecuencia de grandes desprendimientos submarinos provocados por los terremotos. La acumulación de sedimentos determina el surgimiento de abanicos, por la forma que adquiere el depósito, que conforman la elevación continental, a veces muy extensa pero generalmente con poca pendiente.
Las cuencas
Las cuencas, cuya profundidad puede superar los 4.000 m, están formadas por corteza oceánica. En ellas pueden individualizarse diversas formas, desde antiguos volcanes, que hoy son montañas submarinas, hasta áreas deprimidas de perfil estrecho y alargado, las denominadas fosas oceánicas, que marcan el punto de contacto entre las placas litosféricas.
Las dorsales oceánicas
Por su parte, las dorsales oceánicas son cadenas montañosas de considerable longitud —de hecho, las más largas del planeta—, que se extienden de forma ininterrumpida por los océanos, a través de unos 80.000 km; su anchura es de 2 .000 km aproximadamente. Están formadas por crestas de origen volcánico, con una altitud media aproximada de 2.000 m sobre el fondo. No obstante, en algunos puntos de la Tierra, por ejemplo en Islandia, pueden llegar a emerger. Las dorsales, centro de actividad sísmica de notable intensidad, aparecen cortadas por numerosas fallas de gran tamaño, denominadas fallas transformantes.


LITOSFERA Y ASTENOSFERA
La franja superior de la superficie terrestre se encuentra dividida en dos partes:
• La litosfera, formada por la corteza y la zona externa del manto superior, es bastante rígida, presenta aproximadamente 100 km de espesor y en ella, la velocidad de las ondas sísmicas aumenta constantemente en función de la profundidad.
• La astenosfera es la franja inferior del manto superior, que se encuentra fundida parcialmente. Se extiende hasta los 400 km, punto en el que el manto recupera sus características de solidez y rigidez, puesto que la velocidad de las ondas sufre una nueva alteración muy brusco.

PROYECCIONES DE LA TIERRA






La proyección geográfica es un sistema de representación gráfico que establece una relación ordenada entre los puntos de la superficie curva de la Tierra y los de una superficie plana (mapa). Estos puntos se localizan auxiliándose en una red de meridianos y paralelos, en forma de malla. La única forma de evitar las distorsiones de esta proyección sería usando un mapa esférico pero, en la mayoría de los casos, sería demasiado grande para que resultase útil.
Una buena proyección debe tener dos características, que conserve las áreas (equivalencia) y que conserve los ángulos (conformidad). Desgraciadamente no es posible tener ambas características a la vez, sería como hallar la cuadratura del círculo, por lo que hay que buscar soluciones intermedias. Cuando una proyección conserva los ángulos de los contornos se dice que es ortomórfica o conforme, pero estas proyecciones no conservan las áreas.
Dependiendo de cuál sea el punto que se considere como centro del mapa, se distingue entre proyecciones polares, cuyo centro es uno de los polos; ecuatoriales, cuyo centro es la intersección entre la
línea del Ecuador y un meridiano; y oblicuas o inclinadas, cuyo centro es cualquier otro punto.
Se distinguen cuatro tipos de proyecciones básicas: cilíndricas, cónicas, azimutales y modificadas.









cilindrica



En esta se proyecta el globo terrestre sobre un cilindro. Es una de las más utilizadas aun cuando por lo general en forma modificada, debido a las grandes distorsiones que ofrece en las zonas de latitud elevada, cosa que impide ver en sus verdaderas proporciones las regiones polares. Es utilizada en la creación de algunos mapamundis.








azimutal


En este caso se proyecta una porción de la Tierra sobre un disco plano tangente al globo en un punto seleccionado, obteniéndose la visión que se lograría ya sea desde el centro de la Tierra o desde un punto del espacio exterior. Si la proyección es del primer tipo se llama proyección gnomónica; si del segundo, ortográfica. Estas proyecciones dan una mayor distorsión cuanto mayor sea a su vez la distancia al punto tangencial de la esfera y del plano




conica


La proyección cónica cartográfica se obtiene proyectando los elementos de la superficie esférica terrestre a un cono tangente, tomando el vértice en el eje que une los dos polos.

jueves, 23 de octubre de 2008

MOVIMIENTOS DE ROTACION Y TRASLACION




la rotacion de la tierra es cuando gira sobre sí misma en sentido inverso a las agujas del reloj, es decir, de oeste a este. Por eso, el Sol aparece por el oriente (salida) y desaparece por el occidente (puesta). También sabemos que la rotación demora casi un día (23 horas, 56 minutos y 4,09 segundos), y que en el Ecuador es donde llega a su mayor velocidad (1.666 km/hr), desde donde va disminuyendo hasta llegar a una velocidad nula en los polos






La traslación de la Tierra es el movimiento de este planeta alrededor del Sol. La Tierra describe a su alrededor una órbita elíptica.
Si se toma como referencia la posición de una estrella, la Tierra completa una vuelta en un año sidéreo cuya duración es de 365 días, 6 horas, 9 minutos y 10 segundos. El año sidéreo es de poca importancia práctica. Para las actividades terrestres tiene mayor importancia la medición del tiempo según las estaciones.
Tomando como referencia el lapso transcurrido entre un inicio de la primavera y otro, cuando el Sol se encuentra en el punto vernal, el llamado año trópico dura 365 días 5 horas 48 minutos y 46 segundos. Este es el año utilizado para realizar los calendarios.

martes, 21 de octubre de 2008

LINEAS, PUNTOS Y CIRCULOS IMAGINARIOS DE LA TIERRA

Al eje terreste tambien se le dice eje polar. Esta es una linea en la cual la tierra gira teniendo como eje esta liena, esta atraviesa la tierra de un lado a otro llamado polo norte y polo sur. Cuando un cuerpo gira lo hace sobre un eje. Ejemplo: Una llanta de una bicicleta o una pirinola.



La inclinacion del eje terreste con respecto a la perpendicular se conoce como normal y al plano de la orbita, llamada tambien ecliptica.



L vertical es la linea que sigue un cuerpo cuando es atraido por la graverdad del planeta. Ejemplo:una bailarina que esta parada, sus pies serian la base, los cuales son atraidos hacia el centro de la tierra y su cabeza la parte mas alta es llamada cenit y el punto mas bajo es llamado nadir.




CIRCULOS IMAGINARIOS
1.2. Los Paralelos: son círculos imaginarios que recorren la Tierra transversalmente. Se caracterizan por disminuir de tamaño desde el Ecuador hacia los polos. Los paralelos más importantes son:
a) El Ecuador Terrestre: es el círculo imaginario más grande que recorre a la Tierra y la divide en dos mitades iguales conocidos como Hemisferios: Norte y Sur. Es utilizado como referencia para señalar los valores de latitud, asi como la dirección que puedan asumir. Finalmente, es necesario señalar que el Ecuador Terrestre es igual de distantes a los polos geográficos.




Los Trópicos
Proviene del griego tropos que significa vuelta. Los más importantes son: Los trópicos de Cáncer y Capricornio. El Trópico de Capricornio. estos establecen limites para saber el clima de esa zona.




Los Círculos Polares
Establecen límites entre las zonas templadas y frías del globo terráqueo. En ellos se produce el sol de media noche, ya que el Sol cae ininterrumpidamente por 24 horas continuas




SEMICIRCULOS IMAGINARIOS
Los Meridianos: son semicírculos perpendiculares al Ecuador, se unen en los polos y cada uno completa con su meridiano opuesto un círculo terrestre que pasa por los polos. A diferencia de los paralelos, todos los Meridianos poseen el mismo tamaño. y estos nos dicen valores de longitud.




Los Meridianos más importantes son: Greenwich y el de 180°.
Meridiano de Greenwich: es considerado como el meridiano base o principal y junto a su meridiano opuesto o antípoda, dividen al planeta en dos mitades iguales o Hemisferios: Oeste y Este.


Meridiano de 180°: es opuesto a Greenwich y es conocido como la Línea Internacional del Tiempo. tiene curvaturas para no recorrer ninguna de las islas del Océano Pacífico,porque determina el cambio de día y fechay atraviesa el estrecho de Behring.




LÍNEAS IMAGINARIAS
El eje terrestre: Llamado línea de los polos, pues intercepta a los polos geográficos norte y sur respectivamente. Es considerado como la línea geodésica más importante. tiene una longitud de 12 713km.



Los radios: Líneas que unen un punto cualquiera de la superficie terrestre con el centro de la Tierra. pueden ser infinitos, su tamaño disminuye del Ecuador terrestre a los polos.


LA IMPORTANCIA DEL SOL PARA LA TIERRA


Los planetas mas próximos al sol se desplazan alrededor de este con mayor velocidad que los mas distantes.

El sol es demasiado deslumbrante para estudiarlo a simple vista, por eso han inventado telescopios especiales. Este se compone de: 7% de hidrógeno, 27% de helio y 2% de otros elementos.

La elevada temperatura del sol hace un cuerpo de plasma que es el cuarto estado de la materia. el sol comparado con otras estrellas tiene tamaño y temperatura promedio.

Las principales capas son: núcleo, fotósfera, cromósfera y corona solar.

el núcleo del sol oscila entre 14 y 20 millones de grados centígrados. La energía es liberado de forma de rayos ascendiendo luego a la superficie solar. Despues se transforman en rayos X, ultravioleta, infrarojos y luz.

El sol es una estrella en cuyo nucleo se presenta una reaccion atómica cuando el hidrógeno se convierte en helio y libera una gran cantidad de energia. en el núcleo solar ocurren reaccion termonucleares permanentes, se calcula que cada segundo pierde 5000 toneladas de materia para producir energia.

Fotosfera: turbulenta capa de 320 km de espesor y una temperatura de 6000 grados centigrados, es la superficie solar y por lo tanto es la que nos proporciona la luz.

Cromosfera: de 1000 a 8000 km de espesor y la constituyen principalmente hidrogeno, helio y calcio.

Corona solar: es tan brillante que apenas puede observarse cerca del borde del disco. además de luz y calor el sol lleva una corriente constante de particulas cargadas (principalmente electrones y protones).

NEPTUNO


Neptuno es el planeta más exterior de los gigantes gaseosos. Tiene un diámetro ecuatorial de 49,500 kilómetros . Si Neptuno estuviera vacio, contendría casi 60 Tierras. Neptuno completa su órbita alrededor del Sol cada 165 años. Tiene ocho lunas, seis de las cuales fueron descubiertas por la nave Voyager. Un día de Neptuno tiene 16 horas y 6.7 minutos. Neptuno fue descubierto el 23 de Septiembre de 1846 por Johann Gottfried Galle, del Observatorio de Berlín, y Louis d'Arrest, un estudiante de astronomía, a través de predicciones matemáticas realizadas por Urbain Jean Joseph Le Verrier.
Los dos tercios interiores de Neptuno están compuestos por una mezcla de roca fundida, agua, amoniaco y metano líquidos. El tercio exterior es una mezcla de gases calientes compuestos por hidrógeno, helio, agua y metano. El metano da a las nubes de Neptuno su característico color azul.
Neptuno es un planeta dinámico con varias manchas grandes y oscuras que recuerdan las tormentas huracanadas de Júpiter. La mayor de las manchas, conocida como la Gran Mancha Oscura, tiene un tamaño similar al de la Tierra y es parecida a la Gran Mancha Roja de Júpiter. La nave Voyager reveló una pequeña nube, de forma irregular, moviéndose hacia el este que recorre Neptuno en unas 16 horas. Este scooter o patinete, así ha sido apodada, podría ser un penacho volcánico que asoma por encima de la capa de nubes.
Se han observado en la atmósfera alta de Neptuno, brillantes nubes alargadas, similares a los cirros de la Tierra. A bajas latitudes norte, la nave Voyager capturó imágenes de bancos de nubes que proyectaban su sombra sobre las capas de nubes inferiores.
Los vientos más fuertes medidos en cualquiera de los planetas del sistema solar son los de Neptuno. La mayor parte de estos vientos soplan en dirección oeste, en sentido contrario a la rotación del planeta. Cerca de la Gran Mancha Oscura, los vientos soplan casi a 2,000 kilómetros por hora.
Neptuno posee un conjunto de cuatro anillos estrechos y muy tenues. Los anillos están compuestos por partículas de polvo, que podrían originarse en los choques de pequeños meteoritos con las lunas de Neptuno. Desde los telescopios situados en la superficie terrestre los anillos aparecen como arcos pero desde el Voyager 2 los arcos se convierten en manchas brillantes o racimos de manchas en el sistema de anillos. La causa exacta de estos brillantes racimos es desconocida.
El campo magnético de Neptuno, como el de Urano, está bastante inclinado, 47 grados respecto al eje de rotación y desplazado al menos 0.55 radios (unos 13,500 kilómetros ) del centro físico. Comparando los campos magnéticos de los planetas, los investigadores piensan que la extrema orientación podría ser característico de los flujos en el interior del planeta y no el resultado de la inclinación del propio planeta o de cualquier posible inversión de los campos en ambos planetas.

URANO


Urano es el séptimo planeta desde el Sol y es el tercero más grande del Sistema Solar. Fue descubierto por William Herschel en 1781. Tiene un diámetro ecuatorial de 51,800 kilómetros y completa su órbita alrededor del Sol cada 84.01 años terrestres. Está a una distancia media del Sol de 2,870 millones de kilómetros . El día de Urano dura 17 horas y 14 minutos. Urano tiene al menos 15 lunas. Las dos más grandes, Titania y Oberón, fueron descubiertas por William Herschel en 1787.
La atmósfera de Urano está compuesta por un 83% de hidrógeno, 2% de metano y pequeñas cantidades de acetileno y otros hidrocarbonos. El metano situado en la parte alta de la atmósfera absorbe la luz roja, dando a Urano su color verde-azul. La atmósfera está organizada en nubes que circulan a latitudes constantes, de forma parecida a como lo hacen las bandas latitudinales más intensas de Júpiter y Saturno. Los vientos en latitudes medias de Urano soplan en la dirección de la rotación del planeta. Estos vientos alcanzan velocidades de 40 a 160 metros por segundo. Experimentos científicos por radio han encontrado vientos en el ecuador que soplaban a unos 100 metros por segundo en dirección opuesta.
Urano se distingue por el hecho de estar inclinado hacia un lado. Esta inusual posición puede ser el resultado de una colisión con un cuerpo planetario durante la historia temprana del Sistema Solar. La nave Voyager 2 comprobó que una de las consecuencias más sorprendentes de esta posición ladeada es su efecto sobre la cola del campo magnético, que está a su vez inclinado 60 grados respecto al eje de rotación del planeta. Se ha comprobado que la cola magnética ha adoptado la forma de un sacacorchos detrás del planeta debido a su rotación. La fuente del campo magnético es desconocida; el supuesto océano de agua y amoníaco que bajo una inmensa presión y eléctricamente conductivo debía estar entre el núcleo y la atmósfera parece que no existe. Los campos magnéticos de la Tierra y otros planetas se piensa que son el resultado de las corrientes eléctricas producidas por sus núcleos fundidos.


ANILLOS DE URANO


En 1977, fueron descubiertos los primeros nueve anillos de Urano. Durante las visitas de las naves Voyager, estos anillos fueron fotografiados y medidos, así como los otros anillos nuevos. Los anillos de Urano son claramente diferentes de los de Júpiter y Saturno. El más exterior de los anillos, epsilon, está compuesto por rocas de hielo de varios pies de envergadura. También parece exitir una tenue distribución de polvo a lo largo del sistema de anillos.
Podrían existir también un gran número de anillos estrechos, o posiblemente incompletos o arcos de anillo, con anchos que no lleguen a los 50 metros (160 pies). Las partículas indiviuales de los anillos presentan una baja reflectividad. Al menos uno de los anillos, el epsilon, tiene un color gris. Las lunas Cordelia y Ofelia actúan como satélites acompañantes del anillo epsilon.

SATURNO


Saturno es el sexto planeta desde el Sol y el segundo más grande del Sistema Solar con un diámetro ecuatorial de 119,300 kilómetros. Gran parte de lo que sabemos sobre este planeta es debido a las exploraciones Voyager en 1980-81. Saturno está claramente achatado en los polos, como resultado de la rápida rotación del planeta alrededor de su eje. Su día dura 10 horas, 39 minutos y tarda 29.5 años terrestres en completar su órbita alrededor del Sol. La atmósfera está básicamente compuesta por hidrógeno con pequeñas cantidades de helio y metano. Saturno es el único planeta cuya densidad es inferior a la del agua (aproximadamente un 30% menos). Si fuese posible encontrar un océano lo suficentemente grande, Saturno flotaría en él. El color amarillo del nuboso Saturno está marcado por anchas bandas atmosféricas similares, pero más tenues, que las encontradas en Júpiter.
El viento sopla a grandes velocidades en Saturno. Cerca del ecuador, alcanza velocidades de 500 metros por segundo. El viento sopla principalmente hacia el este. Los vientos más fuertes se encuentran cerca del ecuador y su velocidad disminuye uniformemente a medida que nos alejamos de él. A latitudes por encima de los 35 grados, los vientos alternan su dirección de este a oeste según aumenta la latitud.
El sistema de anillos de Saturno hace de él uno de los objetos más bonitos del sistema solar. Los anillos están descompuestos en un número de partes diferentes: los anillos brillantes A y B y un anillo C más ténue. El sistema de anillos tiene varias aberturas. La principal de estas aberturas es la División Cassini, que separa los anillos A y B. Giovanni Cassini descubrió esta división en 1675. La División Encke, que parte al anillo A, recibe su nombre de Johann Encke, quien la descubrió en 1837. Las sondas espaciales han demostrado que los anillos principales están realmente constituidos por un gran número de anillos más estrechos. El origen de los anillos es dudoso. Se cree que los anillos podrían haberse formado a partir de las grandes lunas que sufrieron fuertes impactos de cometas y meteoroides. La composoción de los anillos no se conoce con seguridad, pero los anillos si contienen una cantidad significativa de agua. Podrían estar compuestos por icebergs o bolas de nieve cuyo tamaño varía entre pocos centímetros y varios metros. La mayor parte de la elaborada estructura de algunos de los anillos es debida a los efectos gravitacionales de los satélites cercanos. Este fenómeno está demostrado por las relaciones entre el anillo F y dos pequeñas lunas que acompañan al material del anillo.
Las naves Voyager también detectaron unas trazas radiales en forma de rayos en el ancho anillo B. Se cree que estas trazas están compuestas por finas partículas del tamaño del polvo. Se observó como los rayos se formaban y desaparecían entre las diferentes tomas realizadas por las naves. Aunque la carga electrostática podría crear rayos mediante la levitación de partículas de polvo por encima del anillo, la causa exacta de la formación de estos rayos no se conoce muy bien.
Saturno posee 18 lunas confirmadas, el mayor número de satélites en el sistema solar. En 1995, empleando el Telescopio Espacial Hubble, varios investigadores observaron cuatro objetos que podrían ser nuevas lunas.

JUPITER


Júpiter es el quinto plantea desde el Sol y es el mayor del Sistema Solar. Si Júpiter estuviera vacio, cabrían en su interior más de mil Tierras. También contiene más materia que el resto de los planetas combinados. Tiene una masa de 1.9 x 1027 kg y un diámetro ecuatorial de 142,800 kilómetros . Júpiter posee 16 satélites, cuatro de ellos - Calisto, Europa, Ganimedes e Io - fueron observados ya por Galileo en 1610. Existe un sistema de anillos, pero muy tenue y es invisible desde la Tierra. La atmósfera es muy profunda, comprendiendo quizá al propio planeta, y es de alguna manera como el Sol. Está compuesta principalmente por hidrógeno y helio, con pequeñas cantidades de metano, amoníaco, vapor de agua y otros compuestos. A grandes profundidades dentro de Júpiter, la presión es tan grande que los átomos de hidrógeno se rompen liberando sus electrones de tal forma que los átomos resultantes están compuestos únicamente por protones. Esto da lugar a un estado en el que el hidrógeno se convierte en metal.
La dinámica del sistema climático de Júpiter se refleja en unas franjas latitudinales de colores, nubes atmosféricas y tormentas. Los patrones de nubes cambian en horas o días. La Gran Mancha Roja es una compleja tormenta que se mueve en sentido antihorario. En su contorno exterior, el material tarda en girar entre cuatro y seis días; cerca del centro, los movimientos son menores e incluso lo hacen en direcciones aleatorias. Un montón de otras pequeñas tormentas y remolinos aparecen a lo largo de las bandas nubosas.
Las emisiones Auroranas, similares a las auroras boreales de la Tierra, fueron observadas en las regiones polares de Júpiter. Las emisiones auroranas parecen estar relacionadas con material procedente de Io que cae en espirales sobre la atmósfera de Júpiter a lo largo de las líneas del campo magnético. Se han observado también relámpagos de luz sobre las nubes, similares a los super relámpagos en las zonas altas de la atmósfera terrestre.
Los Anillos de Júpiter
Al contrario que los anillos de Saturno, que presentaban un patrón complejo e intrincado, Júpiter posee un único sistema sencillo de anillos compuesto por un halo interno, un anillo principal y un anillo Gossamer. Para la nave espacial Voyager, el anillo Gossamer parecía un sólo anillo, pero las imágenes captadas por Galilego nos muestran un descubrimiento inesperado, en realidad se trata de dos anillos. Uno está encerrado dentro del otro. Los anillos son muy tenues y están compuestos por partículas de polvo lanzadas al espacio cuando los meteoroides interplanetarios chocan con las cuatro lunas interiores de Júpiter: Metis, Adrastea, Tebe y Amaltea. Muchas de las partículas tienen un tamaño microscópico.
El halo interior tiene forma toroidal y se extiende radialmente desde unos 92,000 kilómetros hasta los 122,500 kilómetros desde el centr ode Júpiter. Estáformado por partículas de polvo procedentes del borde interior del anillo principal que "florecieron" hacia afuera a medida que caían hacia el planeta. En anillo principal y más brillante se extiende desde el borde del halo hasta los 128,940 kilómetros justo dentro de la órbita de Adrastea. Cerca de la órbita de Metis, el brillo del anillo principal dsiminuye.
Los dos tenues anillos Gossamer tiene una naturaleza bastante uniforme. El anillo Amaltea Gossamer más interno se extiende desde la órbita de Adrastea hasta la órbita de Amaltea a 181,000 kilómetros del centro de Júpiter. El anillo Tebe Gossamer más tenue se extiende desde la órbita de Amaltea hasta la órbita de Tebe a 221,000 kilómetros .

Los anillos y lunas de Júpiter se mueven en el interior de un intenso cinturón de radiación compuesto por electrones e iones que han sido atrapdos por el campo magnético del planeta. Estas partículas y campos comprenden la magnetosfera joviana o entorno magnético, que se extiende desde los 3 a 7 millones de kilómetros (1.9 a 4.3 millones de millas) hacia el Sol, y se estrecha en forma de manga hasta alcanzar la órbita de Saturno - a una distancia de 750 millones de kilómetros.

MARTE


Marte, apodado a veces como el Planeta Rojo, planeta rojizo de brillo variable cuya tonalidad se debe a la oxidacion o corrosion de su superficie su atmosfera no retiene calor ytiene 95% de dixido de carbono ademas de argon y otros elementos. En el se encuentra olympus el volcan mas grande conocido en el sistema solar (25km de altura y 600 de diametro. En Julio de 1965, la nave Mariner 4, transmitió 22 imágenes cercanas de Marte. Todo lo que se podía ver era una superficie con muchos cráteres y canales de origen natural pero ninguna evidencia de canales artificiales o agua circulante. Finalmente, en Julio y Septiembre de 1976, las sondas Viking 1 y 2 se posaron sobre la superficie de Marte, se han echo pruebas para detectar si hay vida en marte pero estas han sido muy ambiguas, las pruebas realizadas en la actualidad han descubierto que no hay agua en marte . Es el cuarto planeta del Sistema Solar. Forma parte de los llamados planetas telúricos (de naturaleza rocosa, como la Tierra) y es el planeta interior más alejado al Sol. Es, en muchos aspectos, el más parecido a la Tierra.
Tycho Brahe midió con gran precisión el movimiento de Marte en el cielo. Los datos sobre el movimiento retrógrado aparente (lazos) permitieron a Kepler hallar la naturaleza elíptica de su órbita y determinar las leyes del movimiento planetario conocidas como leyes de Kepler.
Forma parte de los planetas superiores a la Tierra, que son aquellos que nunca pasan entre el Sol y la Tierra. Sus fases están poco marcadas, hecho que es fácil de demostrar geométricamente. Considerando el triángulo Sol-Tierra-Marte, el ángulo de fase es el que forman el Sol y la Tierra vistos desde Marte.

PLANETA TIERRA


Solo en este planeta coexisten los 3 estados de la materia solido liquido y gaseoso. Está situada aproximadamente a unos 150 millones de kilómetros del Sol. Es el único planeta del universo que se conoce en el que exista y se origine la vida. La Tierra se formó al mismo tiempo que el Sol y el resto del Sistema Solar, hace 4570 millones de años. El volumen de la Tierra es más de un millón de veces menor que el Sol y la masa de la Tierra es nueve veces mayor que la de su satélite, la Luna. La temperatura media de la superficie terrestre es de unos 15 ºC. En su origen, la Tierra pudo haber sido sólo un agregado de rocas incandescentes y gases.
A la forma de la Tierra se le denomina geoide. El geoide es una superficie similar a una esfera achatada por lo polos (elipsoide). Su diámetro es de unos 12 700 km, más de diez veces la longitud de la península Ibérica.
Las primeras culturas creían que la Tierra era plana. Algunos astrónomos eminentes de la Antigüedad creyeron en la posibilidad de que la Tierra no fuese plana sino esférica, ya que de esa manera muchos fenómenos naturales tendrían una explicación lógica. Sin embargo, hasta el siglo XVI no se pudo demostrar que era esférica, cuando Juan Sebastián Elcano completó la primera vuelta al mundo a bordo de un barco.

El 71% de la superficie de la Tierra está cubierta de agua. Es el único planeta del sistema solar donde el agua puede existir permanentemente en estado líquido en la superficie. El agua ha sido esencial para la vida y ha formado un sistema de circulación y erosión único en el Sistema Solar.
La Tierra es el único de los cuerpos del Sistema Solar que presenta una tectónica de placas activa: Marte y Venus quizás tuvieron una tectónica de placas en otros tiempos pero, en todo caso, se ha detenido. Esto, unido a la erosión y la actividad biológica, ha hecho que la superficie de la Tierra sea muy joven, eliminando por ejemplo, casi todos los restos de cráteres, que marcan muchas de las superficies del Sistema Solar.
La Tierra posee un único satélite natural, la Luna. El sistema Tierra-Luna es bastante singular, debido al gran tamaño relativo del satélite.
Uno de los aspectos particulares que presenta la Tierra es su capacidad de homeostasis que le permite recuperarse de cataclismos a medio plazo.

VENUS






Venus es el segundo planeta del Sistema Solar en orden de distancia desde el Sol, y el cuarto en cuanto a tamaño (de menor a mayor). Recibe su nombre en honor a Venus, la diosa romana del amor. Se trata de un planeta de tipo terrestre o telúrico, llamado con frecuencia el planeta hermano de la Tierra, ya que ambos son similares en cuanto a tamaño, masa y composición.



Al encontrarse Venus más cercano al Sol que la Tierra, siempre se puede encontrar, aproximadamente, en la misma dirección del Sol (su mayor elongación es de 47,8º), por lo que desde la Tierra se puede ver sólo unas cuantas horas antes del orto o después del ocaso. A pesar de ello, cuando Venus es más brillante puede ser visto durante el día, siendo uno de los tres únicos cuerpos celestes que pueden ser vistos tanto de día como de noche (los otros son la Luna y el Sol). Venus es normalmente conocido como la estrella de la mañana (Lucero del Alba) o la estrella de la tarde (Lucero Vespertino) y, cuando es visible en el cielo nocturno, es el objeto más brillante del firmamento, aparte de la Luna.
Por este motivo, Venus debió ser ya conocido desde los tiempos prehistóricos. Sus movimientos en el cielo eran conocidos por la mayoría de las antiguas civilizaciones, adquiriendo importancia en casi todas las interpretaciones astrológicas del movimiento planetario. En particular, la civilización maya elaboró un calendario religioso basado en los ciclos de Venus . El símbolo del planeta Venus es una representación estilizada del espejo de la diosa Venus: un círculo con una pequeña cruz debajo, utilizado también para denotar el sexo femenino.

MERCURIO


Mercurio. es el planeta del Sistema Solar más próximo al Sol, y el más pequeño . Forma parte de los denominados planetas interiores o rocosos. Mercurio no tiene satélites. Se conocía muy poco sobre su superficie hasta que fue enviada la sonda planetaria Mariner 10, y se hicieron observaciones con radares y radiotelescopios .
Antiguamente se pensaba que Mercurio siempre presentaba la misma cara al Sol, situación similar al caso de la Luna con la Tierra, que su periodo de rotación era igual a su periodo de traslación, ambos de 88 días. Sin embargo, en 1965 se mandaron pulsos de radar hacia Mercurio, con lo cual quedó definitivamente demostrado que su periodo de rotación era de 58,7 días. Esto no es coincidencia, y es una situación denominada resonancia orbital.
Al ser un planeta cuya órbita es interior a la de la Tierra, Mercurio periódicamente pasa delante del Sol, fenómeno que se denomina tránsito . Observaciones de su órbita a través de muchos años demostraron que el perihelio gira 43" de arco más por siglo de lo predicho por la mecánica clásica de Newton. Esta discrepancia llevó a un astrónomo Francés, Urbain Le Verrier a pensar que existía un planeta aún más cerca del Sol, al cual llamaron Planeta Vulcano, que perturbaba la órbita de Mercurio. Ahora se sabe que Vulcano no existe; la explicación correcta del comportamiento del perihelio de Mercurio se encuentra en la Teoría General de la Relatividad.


Mercurio es uno de los cuatro planetas sólidos o rocosos, es decir, tiene un cuerpo rocoso como la Tierra. Este planeta es el más pequeño de los cuatro, con un diámetro de 4879 km en el ecuador. Mercurio está formado aproximadamente por un 70% de elementos metales y un 30% de silicatos. La densidad de este planeta es la segunda más grande de todo el sistema solar, su valor es de 5430 kg/m3, solo un poco más pequeña que la densidad de la Tierra

martes, 16 de septiembre de 2008

LA TIERRA EN EL SISTEMA SOLAR












Vía Láctea, también llamada la Galaxia, agrupamiento de estrellas con forma de disco, que incluye al Sol y a su Sistema Solar. Para un observador terrestre, el disco de la Galaxia aparece como una banda ligeramente luminosa que se puede observar de noche extendiéndose a través del cielo, sobre todo en las noches de verano claras y sin luna. Antiguamente a esta banda se la llamó Vía Láctea (también Camino de Santiago), nombre que en la actualidad se refiere a toda la galaxia. Las estrellas individuales que vemos en el cielo son aquellas de la Galaxia que están lo suficientemente cerca del Sistema Solar para distinguirlas por separado.

Vía Láctea El Sistema Solar se encuentra en uno de los brazos espirales de la galaxia con forma de disco llamada Vía Láctea. Galaxia espiral Las galaxias espirales como la Vía Láctea contienen millones de estrellas que interactúan unas con otras a través de la atracción gravitatoria. El telescopio espacial Hubble, un poderoso instrumento que gira alrededor de la Tierra, captó imagenes de las regiones centrales de una galaxia espiral muy semejante a la Vía Láctea. La Vía Láctea se extiende a través de las constelaciones Perseo, Casiopea y Cefeo. En la región de la Cruz del Norte, que forma parte de Cisne, se divide en dos corrientes: la corriente occidental que brilla cuando atraviesa la Cruz del Norte, palidece cerca de Ofiuco, a causa de las nubes de polvo, y aparece de nuevo en Escorpio; y la corriente oriental, que es más brillante cuando pasa por el sur a través del Escudo y Sagitario. La parte más brillante de la Vía Láctea se extiende desde la constelación del Escudo a Escorpio, a través de Sagitario. El centro galáctico está en dirección a Sagitario y se encuentra a unos 26.000 años luz del Sol.
ESTRUCTURA
Se ha descubierto que la Vía Láctea es una gran galaxia espiral, con varios brazos espirales que se enroscan alrededor de un núcleo central de un grosor de unos 10.000 años luz. Las estrellas del núcleo central están más juntas que las de los brazos, donde se han encontrado más nubes interestelares de polvo y gas. El diámetro del disco es de unos 100.000 años luz. Está rodeado por una nube de hidrógeno, deformada y festoneada en sus extremos, rodeada a su vez por un halo esférico y ligeramente aplastado que contiene muchos cúmulos globulares de estrellas, que se encuentran principalmente encima o debajo del disco. Este halo puede llegar a ser dos veces más ancho que el disco en sí. Además, estudios realizados sobre los movimientos galácticos sugieren que el sistema de la Vía Láctea contiene más de 2 billones de veces la masa que contiene el Sol, mucha más materia de la que se considera que tiene el disco conocido y los cúmulos concomitantes. Sin embargo, los astrónomos han especulado con la idea de que el sistema conocido de la Vía Láctea esté rodeado por una corona mucho mayor de materia no detectada. Otra especulación reciente supone que la Vía Láctea es una galaxia espiral barrada.
TIPOS DE ESTRELLAS
La Vía Láctea contiene tanto estrellas de las llamadas de tipo I, que son estrellas azules y brillantes, como estrellas del tipo II, gigantes rojas. La región central de la Vía Láctea y el halo están compuestos por estrellas del tipo II. La mayor parte de la región se oculta tras nubes de polvo que impiden la observación visual. La radiación de la región central, registrada por medio de mecanismos como células fotoeléctricas, filtros infrarrojos y radiotelescopios, indica la presencia de objetos compactos cerca del centro, posiblemente restos de estrellas o un enorme agujero negro. Astrónomos estadounidenses realizaron observaciones con el telescopio espacial de rayos X Chandra en octubre de 2000 (cuyos resultados fueron publicados en septiembre de 2001), que parecían probar la existencia de un agujero negro central. En octubre de 2002, un equipo internacional de astrónomos del Instituto Max Planck de Física Extraterrestre de Garching (Alemania), presentó nuevos datos sobre el centro de la Vía Láctea. Tras observar y estudiar una estrella que gira en torno al centro galáctico, los científicos pudieron determinar su órbita, lo que les llevó a asegurar que sólo un agujero negro supermasivo podía ser la causa de su movimiento.
Rodeando la región central hay un disco bastante achatado que comprende estrellas de ambos tipos, I y II; los miembros más brillantes de la primera categoría son luminosos, supergigantes azules. Incrustados en el disco y surgiendo de los lados opuestos de la región central, están los brazos espirales, que contienen una mayoría de la población I, junto con mucho polvo interestelar y gas. Un brazo pasa por las proximidades del Sol e incluye a la gran nebulosa de Orión.

TEORIA DEL UNIVERSO INFLACIONARIO


Fue propuesta por Alan Guth, en 1981, para explicar la uniformidad del Universo actual, después de su origen caótico. El Universo sufrió un crecimiento hiperexplosivo en la primera fracción de segundo; luego la parte visible se hinchó varios centímetros expandiéndose y enfriándose a un ritmo más lento. En 1982, A. D. Linde sostuvo que nuestro Universo es esencialmente una burbuja dentro de una región mayor de espacio y tiempo donde se forman continuamente otros universos.

tiempo despues albert eintein publico 3 formas del universo posibles pero solo una era razonable.
esferica
1.- euclidiana
2.-esferica
3.-hiperbolica

TEORIA DE LA EXPANSION DEL UNIVERSO


Teoría propuesta por Edwin Hubble, en la cual considera que todas las galaxias se alejan de la nuestra a velocidades directamente proporcionales a las distancias que nos separan de ellas; por lo tanto, el Universo aumenta constantemente su volumen. Las observaciones astronómicas realizadas mediante la utilización de telescopios equipados con espectroscopio a principios de este siglo fueron la base de esta teoría. Las teorías de la Gran explosión, del Universo estacionario y en expansión, son la más mencionadas para explicar el origen y evolución del Universo; las tres coinciden en que éste se expande.

TEORIA DE LAS PULSACIONES




Algunos astrónomos suponen que después de un proceso de expansión sigue otro de contracción semejante al de algunas estrellas; admiten que en la actualidad estamos en una época de expansión que durará 82 mil millones de años, y después empezará la contracción de la materia en una gran masa que sufrirá otra explosión. Esta teoría considera que hace 10 mil millones de años se inició la expansión y que cada vez el Universo se hace mayor al ocupar el espacio infinito.


EL UNIVERSO ESTACIONARIO


La Teoría del Estado Estacionario es un modelo cosmológico desarrollado en 1949 por Hermann Bondi, Thomas Gold y Fred Hoyle como una alternativa a la Teoría del Big Bang. Aunque el modelo tuvo un gran número de seguidores en la década de los 50, y 60, su popularidad disminuyó a finales de los 60, con el descubrimiento de la radiación de fondo de microondas, y se considera desde entonces como cosmología alternativa.
De acuerdo con la teoría del estado estacionario, la disminución de la densidad que produce el Universo al expandirse se compensa con una creación continua de materia. Debido a que se necesita poca materia para igualar la densidad del Universo, esta Teoría no se ha podido demostrar directamente. La teoría del estado estacionario surge de la aplicación del llamado principio cosmológico perfecto, el cual sostiene que para cualquier observador el universo debe parecer el mismo en cualquier lugar del espacio. La versión perfecta de este principio incluye el tiempo como variable por lo cual el universo no solamente presenta el mismo aspecto desde cualquier punto sino también en cualquier instante de tiempo siendo sus propiedades generales constantes tanto en el espacio como en el tiempo.
Los problemas con esta teoría comenzaron a surgir a finales de los años 60, cuando las evidencias que se obcervaban empezaron a mostrar que, de hecho, el Universo estaba cambiando: se encontraron quásares sólo a grandes distancias, no en las galaxias más cercanas. La prueba definitiva vino con el descubrimiento de la radiación de fondo de microondas en 1965, pues en un modelo estacionario, el universo ha sido siempre igual y no hay razón para que se produzca una radiación de fondo con características térmicas.

BIG BANG



En cosmología, se llama teoría del Big Bang o teoría de la gran explosión a un modelo, postulado por el físico y sacerdote católico Georges Lemaître como parte de la teoría de la relatividad general, que describe el desarrollo del Universo temprano y su forma. Técnicamente, se trata del concepto de expansión del universo desde una singularidad primigenia, donde la expansión de éste se deduce de una colección de soluciones de las ecuaciones de la relatividad general, llamados modelos de Friedmann- Lemaître - Robertson - Walker. El término "Big Bang" se utiliza tanto para referirse específicamente al momento en el que se inició la expansión observable del Universo (cuantificada en la ley de Hubble), como en un sentido más general para referirse al paradigma cosmológico que explica el origen y la evolución del mismo

IMPORTANCIA DE LA GEOGRAFIA


la geografia es importante en la vida diaria no solo para ubicarnos, tambien nos puede servir para ver desde la intencidad del sol o hasta ver cual es el lugar mas indicado para ver donde construir una ciudad o un edificio. tambien nos ayuda a obtener los recursos que el humano necesita como el petroleo que esta en lo profundo de el suelo la geografia nos ayuda a diversas cosas como la explotacion de algunos cultivos los cuales son los indicados para sembrar en esa zona un dato importante es que la geografia nos ayuda a saber donde y que minmerales haytanto como en la tierra como el oceano ejemplo el petroleo.

en cuanto al mar nos ayuda a crear mejores rutas y mapas terrestres

RAMAS DE LA GEOGRAFIA


La geografía puede dividirse en dos ramas fundamentales: la geografía general, también llamada sistemática, y la geografía regional. La geografía general estudia los elementos humanos y físicos de la Tierra con un carácter individual. La geografía regional estudia las diferentes áreas de la tierra y se centra, sobre todo, en las combinaciones únicas y particulares de rasgos humanos y físicos que caracterizan cada región y las diferencian unas de otras, en realidad, las dos ramas son interdependientes y se complementan, por lo que la mayoría de los geógrafos combinan ambas geografías.

las ciencias auxiliares mas importantes para la geografia son :


FISICA BIOLOGIA HUMANA

-geologia -botanica -antropologia

-fisica -zoologia -etnografia

-quimica -ecologia -demografia

-linguistica

-historia

-economia

-politica

-aidrologia

-metodologia




estas ciencias nos ayudan a tener un mayor razonamiento de lo que es la geografia y lo que estudia para poder tener asi una mayor exactitud de informacion

QUE ES LA GEOGRAFIA?


La geografía :La palabra geografía fue adoptada en el siglo II a.C. por el erudito griego Eratóstenes y significa literalmente 'descripción de la Tierra'. El estudio geográfico comprende tanto el medio físico como la relación de los seres humanos con ese medio físico, es decir, los rasgos propiamente geográficos como el clima, los suelos, las formas del suelo, el agua o las formaciones vegetales, junto con los elementos que estudia la geografía humana, como son las entidades de población, las diferentes culturas, las redes de comunicación y otras modificaciones realizadas por el hombre en el entorno físico. Se trata, pues, de una ciencia interdisciplinar que utiliza información propia de otras ciencias como la economía, la historia, la biología, la geología o las matemáticas, entre otras.